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INFLUENCE OF THERMAL EFFECTS ON HYDRODYNAMIC STABILITY OF A 

POLYMERIZATION FRONT 

G. V. Zhizhin and A. S. Segal' UDC 532.5:541.64 

Two features are usually distinguished in investigating the stability of fronts of 
chemical reactions: diffusive-thermal and hydrodynamic stability [I]. The diffusive-thermal 
stability is analyzed under the assumption that perturbations of the front shape are not 
accompanied by perturbations of hydrodynamic fields in its vicinity [2], while the hydrody- 
namic stability is analyzed under the assumption that, on the contrary, no perturbations of 
the concentration and thermal fields are generated [3]. The last assumption is justified if 
the front width ~ is negligibly small in comparison with the perturbation wavelength ~ (the 
zeroth approximation in the small parameter e = 6/~). For short-wave perturbations (6 ~ ~) 
it is necessary to take into account the simultaneous occurrence of diffusive-thermal and 
hydrodynamic processes. This account was carried out most consistently in [4], as applied 
to a planar front in the gas phase. The analysis is restricted to the first approximation 
in e, using an asymptotic method of solving singular perturbation problems with a surface 
discontinuity, as developed in [5]. 

The problem of creating a continuous technological process of obtaining polymer mate- 
rials on the basis of the polymerization frontal effect [6] leads to the statement of sta- 
bility problems of cylindrical and spherical polymerization fronts in radial flows. An im- 
portant polymerization effect is a strong increase in medium viscosity; therefore, the hydro- 
dynamic stability analyzed in [7, 8] is of basic interest in the given case. The thermal 
stability investigated in [9] for a cylindrical front is unrelated to any new physical ef- 
fects relative to [2]. 

In the present study we consider the stability of a stationary cylindrical front in a 
radial flow with account of the mutual effect of thermal and hydrodynamic effects. The 
analysis is carried out within the first approximation in e by the method of matched asymp- 
totic expansions, in which case, unlike [4], one uses the convenient method of transition to 
a moving curvilinear natural coordinate system attached to the front [i0]. First order cor- 
rections in e to the solution obtained in [7] are found, and their effect on front stability 

is analyzed. 

i. We restrict ourselves to the case of angular perturbations of a cylindrical front, 
in which case the problem can be considered as planar in the cross section normal to the 
front axis. Let the closed front F be located between two penetrable coaxial cylindrical 
surfaces S_ and S+, and let it propagate in the direction of the normal n toward the flow 
(the internal supply of the medium), with the regions ~_ and ~+ filled by the original mix- 
ture and by the final product (see Fig. i). Following [2, 4], the_proble 9 is solved in the 
zeroth approximation in the small Frank-Kamenetskii parameter ~ = RTr/E (R is the universal 
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Fig. i 

gas constant, T r is the temperature in the reaction zone, and E is the effective activation 
energy of the reaction). In this case the reaction zone is treated as a discontinuity sur- 
face of conversion and, consequently, viscosity. In the following it is identified with the 
front. The temperature dependence of the viscosity is not taken into account, while the 
other thermophysical parameters of the medium are assumed constant. 

The flow in the regions ~_ and ~+ is described by the Stokes and continuity equations 
[7, 8]: 

VP• : ~ •  V " V• = 0 ( 1 . 1 )  

(p is the pressure, V is the velocity vector, ~ is the dynamic viscosity coefficient, and V 
is the vector differential operator). We note that the Reynolds number Re• = RoU/vi, con- 
structed from the radius of the unperturbed front R0, its normal propagation velocity with 
respect to the medium U, and the kinematic viscosity coefficient of the medium ~, is small 
only in the region ~+, filled by the highly viscous product, while in the region ~_ it can 
be comparable to unity. As shown in [7, 8], however, in the latter case the motion of the 
perturbed front becomes dependent on the low-viscosity original mixture, and the results ob- 
tained by using Eq. (i.i) remain valid. 

The continuity of the velocity and stress vectors is satisfied at the front F due to 
the incompressibility of the medium and the condition of flow "adhesion" 

V_ = V+, P ._  = P~§ ( 1 . 2 )  

The hydraulic resistances of the boundary surfaces S_ and S+ are assumed linear, so 
that the following conditions are satisfied on them 

p ~ - - p •  = +-~•177177 = 0 ,  ( 1 . 3 )  

where p• is the pressure outside the reaction volume (near the boundaries S• respectively), 
and o• are coefficients, which must be called local hydraulic resistances of the surface 
boundaries. 

Equations (i.i) are also supplemented by the initial front shape, but the statement of 
the problem remains nonclosed: to close it, it is necessary to assign the condition of front 
motion with respect to the medium. With this purpose we turn to analyzing the internal dif- 
fusive-thermal structure of the front. 

As is well known, in the gas phase all transport coefficients coincide in order of magni- 
tude (D ~ ~ ~ v, where D is the diffusion coefficient, and < is the temperature conductivity), 
in which case the transport processes are concentrated and interact in the preheating zone 
ahead of a front of thickness of order 6 ~ K/U. 

In the condensed phase, as a rule, D << K << v and the thickness of the influence zone 
of diffusion effects 6 D ~ D/U is substantially smaller, while the thickness of the influence 
zone of viscous effects 69• ~ v• is substantially larger than the thickness of tile preheat- 
ing zone 6. In the case of polymerization 6 D is not only much smaller than 6, but also 
smaller than the thickness of the reaction zone 6r ~ ~6, in which case diffusion can be ne- 
glected [ii]. Due to the sharp increase in medium viscosity at the front the 6~ values are 
different for the regions ~_ and S+. In particular, 6v+ substantially exceeds not only 6, 
but also the radius of the unperturbed front R0, playing the role of characteristic geometric 
scale of the problem (Re+ = R0/6v+ = RoU/~+ << i). The quantity 6v_ is larger than or com- 
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parable to R0 (Re_ = R0/6 v_ = RoU/v_ ~ i), and in both cases viscous effects are not concen- 
trated in a narrow region, while they propagate over the whole flow region. If the perturba- 
tionwavelength is of scale R0, then 6v_ is also the inhomogeneity scale of the velocity 
field. 

The inhomogeneity in the temperature field T, generated at the boundary S_ and on the 
front F, drifts downward along the flow; the spatial scale of this inhomogeneity in all di- 
rections is R0 (the external scale). At the same time the inhomogeneity, generated at the 
front F and the boundary S+, is transported by the thermal conductivity upward along the 
flow and is "pressed" by the flow to the corresponding surfaces, forming in their vicinity 
temperature boundary layers with spatial scales R0 in the tangential direction and 6 in the 
normal direction (the internal scale). These two spatial inhomogeneity scales of the temper- 
ature field generate two time scales: the fast [t]z = 6/U ~ K/U =, determining the front 
propagation time at a distance of the order of its thickness, and the slow [t] 2 = R0/U, re- 
lated to changes in the front shape. 

Since the temperature distribution in the internal scale appears attached to the front, 
for its analysis it is convenient to use the moving curvilinear system of natural coordinates 
(h, s) attached to the front (see Fig. i). In this system the nonstationarity is obviously 
related to a change in the front shape; therefore, the single time scale [t] 2 = R0/U is re- 
tained. 

The scales of the remaining variables are selected according to the structure of the 
temperature field: [h] = 6, [R] = R 0, [V h] = [V s] = U, [T] = Q/c (R is the local radius of 
curvature of the front F, Q is the thermal effect of the reaction, and c is the heat capacity 
of the medium). 

Not dwelling on the quite unwieldy technique of transition to the coordinates (h, s), 
we provide the equation of thermal conductivity in these coordinates in the dimensionless 
variables corresponding to the scales introduced (with the same notations as their dimen- 
sional analogs): 

~--Ti= + ( W  + Vh)---5~ + ~ V~ i + ~h/tt a~ g" --~Y o~ 

t a [ ate+ ] e '~ azTi+_ �9 
- l + ~ / R  oh (i + ~h/R) T j  § it + ~a/R) ~ a~ ~ 

(1.4) 

Here Ti• : Tii(h, s, t) are the temperature distributions in the internal scale, f = f ( s , t )  
is a vector representing the "natural" front shape, g = [ -- r is the vector joining the arbi- 
trary point given by the radius-vector r and the "current" point of the front given by the 
vector |, W = (3|'/3t)'n is the normal velocity of the front relative to the resting coordi- 
nate system, and e = 6/R 0 ~ K/UR0 = i/Pc is a small parameter, having the meaning of the re- 

ciprocal Peclet number. 

The temperature and total energy flux are continuous in the internal scale at the front 
F, while the conductive flux undergoes a jump, whose magnitude is found from the temperature 
distribution in the reaction zone in the zeroth approximation in ~ [2, 4]. In the case of the 
simplest gross kinetic process with a zeroth-order Arrhenius reaction we have 

T,_ = T~+ = T~ (h = 0); 

aT,_/ah - -  aT,+/ah = W § Vh (h = 0);  

OT~_/Oh - -  OT~+/Oh = K exp ( - - A / 2 T ~ )  (h = O) 

(1.5) 
(1.6) 
(1.7) 

(K = (kK)Z/2/U, A = Ec/RQ, and k is a preexponent). At large distances from the temperature 
front there is a smooth departure by a constant value 

a r ~ / a h  = 0 (h = +..+_oo). ( 1 . 8 )  

In the external scale the front is considered as a surface with a temperature jump with 
the nonstationarity, as usual, related only to a change in the front shape and conservation 
of the single time scale It] 2 = R0/U. Besides, there is no scale difference here between 
the stresses normal and tangential to the front, so that there is a single spatial scale 
[r I] = R 0. The scales of the remaining quantities are not changed, in which case the heat 
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conduction equation acquires the following form in the corresponding dimensionless variables 

OTee/at + V• �9 VTe• = eVZT~• (1.9) 

(Te• = Te• , t) is the temperature distribution in the external scale). 

At the boundary S_ we impose the following isothermal input in the reaction volume 

T,_ ts_ = To, ( 1 .  I0) 

while a condition at the boundary S+ is not specified.* 

The temperatures in the internal and external scales coincide at the front F: 

T~• = Ti•177 (1.11) 

Equations (1.4), (1.9) with boundary conditions (1.5)-(1.8), (i. I0), (i.ii) make it pos- 
sible to find the temperature distributions in the internal and external scales and the front 
velocity. This is done within the zeroth and first approximations in g. 

2. We expand the dependent variables in series in g: 

I ' ~ •  = o x ... WO 7~•  eTa• + .... Te• = T~, + 8T~• + , W =  + eW~ + ..- ( 2 . 1 )  

Besides, in the external scale we expand the velocity vector in a Taylor series in the 
coordinate h in the vicinity of the front. Since the spatial inhomogeneity scale of the 
velocity field in all directions is R0, in dimensionless variables we have 

I ova_ 
V+ = V_+ th=o + e - ~  h=oh+ ... ( 2 . 2 )  

Substituting these expansions into (i.i)-(i. Ii) and retaining first order terms in e, 
we obtain a statement of the problem within the corresponding approximations. Within the 
zeroth approximation 

O~t~• ~ --U~ = O; ( 2 . 3 )  

ar~ = 0 (h = +_ oo); ( 2 . 4 )  

TO,_ = Toi+ = Tot, O T L / a h  - -  a ro+ /ah  = U o, (2.5) 

OT~_/Oh --  OT~+/Oh = K exp ( - -  A/2T~ ) (h = 0); 

OT~+/at - -  V+. vT~I  = O; ( 2 . 6 )  

T~_ Is_ ----- To; ( 2 . 7  ) 
0 ~o• ]~ = r,•  k=• ( 2.  s )  

( U~ = W~ + Vh[h= 0 is the normal front velocity with respect to the medium within the zeroth 
approximation). 

From (2.6), (2.7) we find Te _~ = To, i.e., the flow is isothermal in the region ~_ in 
the external scale within the zeroth approximation. From (2.8) we have Ti_~ = To; inte- 

grating (2.3) with account of the last equality, as well as conditions (2.4) and the first 
two of conditions (2.5), the temperature distribution is obtained in the internal scale 
within the zeroth approximation: 

T~_ = T O + ( T ~ - -  To)e  v%, T,L = T~ = c o n s t  (h). ( 2 . 9 )  

*We note that assigning on the boundary S_ conditions of the second or third kind assumes 
that this surface is at the same time a device implementing reaction supply to the medium 
and heat transfer in the direction normal to it. Such a combination of technological func- 
tions is practically quite complicated; therefore, the likelihood of controlling the front 
stability by means of heat exchange at the outlet in the reaction volume is considered to be 
problematic. This group of problems is not considered in the present study. 
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Substituting the last equality into the remainder of conditions (2.5), we obtain 

r~ = T o + i = Tin, U ~ = K exp  ( - -  A /2Tm)  = i ,  ( 2 . 1 0 )  

where T m is the temperature of adiabatic reaction transmission (the last equality in (2.10) 
follows from the expression for the velocity U of a planar front in a resting medium with 
the use of simple kinetics [i]). Relations (2.9), (2.10) show that within the zeroth approx- 
imation the "internal" thermal front structure is not distorted with respect to a planar 
front in a resting medium. 

From (2.6), (2.8) we find Te+ ~ = To + i = Tm, i.e., the flow in the region ~+ is also 
isothermal in the external scale within the zeroth approximation. 

The condition at the boundary S+ determines the formation of a temperature boundary 
layer near this surface. Outside this layer the temperature field is determined by convec- 
tive heat transport from regions located above the flow, therefore no condition was required 
on S+. 

Taking into account the solution found within the zeroth approximation, within the first 
approximation the statement of the problem looks as follows: 

2 1  OT~• ( OV h U I _  Rfl_.) 0 Ti• U ~ -- h + ea; ( 2 . 1 1 )  
Oh 2 ~h - -  - ~  h=o 

OTi•  = 0 (h = • oo); ( 2 . 1 2 )  

T~_ = T~+ = Tlr, O T ~ _ / O h -  OT~+/Oh = U 1, ( 2 . 1 3 )  

O T ~ _ / O h - -  OT~+/Oh = ZT~ (h = 0); 

OT~• + V•  vT~• = 0; 

r L  = o; 

T~• Iv = T~• la=• 

Here U z = W I is the first order correction to the normal front velocity, and Z = A/2Tm 2 is 
the Zel'dovich number (in dimensional variables Z = E(T m - T0)2RTm2). 

Following some transformations we obtain the problem solution within the first approx- 
imation 

(2.14) 

(2.15) 

(2.16) 

= "-~k=. h + ( U1 R ~ ]a=.) h + ea' 

T~+ = T~ = const (h); 

T~ = i / R  + (OVh/Oh)h=o, U 1 = ZT~. ( 2 . 1 8 )  

B e s i d e s ,  Te -z  = 0,  w h i l e  t h e  f i e l d  Te+ z i s  f o u n d  f rom Eq. ( 2 . 1 4 )  w i t h  t h e  b o u n d a ry  c o n d i t i o n  

Te+ZIF = Tr z. Thus, in the external scale the flow remains isothermal in the region fl_ with- 
in the first approximation, while corrections for the temperature distributions appear in 
the region ~+. Similar corrections are generated for the temperature distribution in the 
internal scale and for the front velocity. 

Using the last of equalities (2.10), (2.18), we find the normal front velocity relative 
to a resting coordinate system. Turning to dimensional variables, we obtain, respectively, 
within the zeroth and first approximations 

( 2 . 1 9 )  

( 2 . 2 0 )  

W = Vnlv + U; 

[ t  OV n 
W =  

(V n is the projection of the local flow velocity on the normal to the front, and 8/~n is the 
derivative in this direction). 
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Relation (2.20) shows that the first order corrections for the normal front velocity 
are related to its curvature and to the inhomogeneity in the velocity field, and they coin- 
cide with the well-known Markstein corrections and with the "stretch-effect" correction [i, 
13]. Due to the quasistationarity of the Stokes and continuity equations (i.I) these cor- 
rections are completely determined by the front shape at a given moment of time (if inertial 
terms had been included in the equations of motion of the medium, the "stretch-effect" cor- 
rection, containing the derivative 8Vn/Sn , would have also depended on the previous history 
of the front motion). 

Conditions (2.19) or (2.20) close the statement of the problem of front stability (1.1)- 
(1.3) within the zeroth and first approximations, respectively. The zeroth approximation 
was investigated in [7], while here we investigate the effect of first-order corrections. 

3. We consider initially stationary front states and their stability to perturbations 
of its radius, not accompanied by perturbations of its cylindrical shape (the zeroth mode). 
Taking into account that W = -dR/dt, Vnl F = -Vr(R) , (SVn/Sn) F = (SVr/Sr)r= R = -Vr(R)/R , we 
rewrite (2.19): 

d R / d t  = [V~(R)-- U](I + •  ( 3 . 1 )  

From the last relation we obtain that in the stationary state the front radius is determined 
by the equation 

v~(Ro) = u ( 3 . 2 )  

and thus does not change with respect to the zeroth approximation. This is related to the 
fact that in the given case the effects related to front distortion and to velocity field 
inhomogeneity compensate each other. 

Putting R = R0 + R' (R' is a small perturbation) and linearizing (3.1) in R', we find 
dR'/dt = -00R', R' ~ exp(-~t), where 

= ~o + ~ 1  + . . . .  ~o  = [ d V ~ ( R ) ~ R ] R = R o  ' ~1 = Z~O ( 3 . 3 )  

(~ is the perturbation increment). From the last relation we see that the first-order cor- 
rection increases the absolute value of the increment and does not change its sign; there- 
fore, all conclusions concerning the front stability obtained within the zeroth approxima- 
tion in e [7] are only enhanced within the first approximation. In particular, in feeding 
the medium with a constant flow rate q (Vr(R) = q/2~R, ~0 = 2~U2/q) for a single stable sta- 
tionary state we have 0 < m0 < ~, so that within the first approximation in e the perturbations 
decay more quickly than in the zeroth approximation. 

In the case of external supply to the medium (in Fig. 1 the front F propagates in a 
direction opposite to the normal n, but, as previously, toward the flow, original mixture, 
and final product filling the regions ~+ and ~_, respectively) similar calculations lead to 
a first-order correction of opposite sign to the increment ~z = _Zm0. In this case the ab- 
solute value of the increment decreases, and there is a tendency to changing the conclusion 
concerning front stability. In particular, when the medium is supplied with constant flux 
(Vr(R) = -q/2~R, m ~ = -2vU2/q) the single unstable stationary state has a tendency to sta- 
bilization (m0 < e < 0). In reality, however, the change in sign of ~ can occur only for 
small radii of curvature of the front, comparable with its thickness (R 0 ~ 6). For these 
R 0 values the frontal regime of reaction transmission is practically degenerate, and the 
first order approximation in e becomes operative. Nevertheless, extrapolating the results 
obtained to the small R 0 region, we find that in the case of external supply to the medium 
with constant flux the stationary state of the front becomes stable for 

R o = R~ = Z6. ( 3 , 4 )  

The last relation must be considered as orientational, and its accuracy is enhanced for 
strongly activated reactions, when Z >> 1 and R 0 >> 6. 

4. Consider perturbations of arbitrary shape 

! t 

V+=Vo++V+,  p = p o _ + + p •  n =  
= no + n ' ,  W = W o + W '  , 

(4.1) 
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where the subscript 0 denotes the stationary value of quantities, the prime denotes pertur- 
bations, and f is a function giving the front shape in a cylindrical coordinate system: r = 
f(~, t) (f0 = R0 = const (~, t)). Substituting (4.1) into (1.1)-(1.3) and (2.19) or (2.20), 
we linearize the nonlinear boundary conditions at the front in small perturbations. In this 
case relation (2.19), corresponding to the zeroth approximation in e, acquires the form [7] 

O/'/Ot + (U/Bo) /' --  V~ = O. . (4 .2 )  

We dwell on the linearization of first order corrections to the front velocity. In a 
polar coordinate system we have for the front radius 

t i n  = [1~ + 2(W/O~) ~ -  I(0~/0~ 2) ]/[fl  + (~/O~)2p/~. 

Substituting expansion (4.1) for f into this expression, following linearization we find 

t / R  U B  o - -  ~' ,~2 = ~ / ~ , o  - -  (O~/'/8~)/B~ + . . .  ( 4 . 3 )  

To linearize the second correction it is convenient to use the following representation. 
From the continuity equations in the natural coordinates (h, s) we obtain at the front 

OVh_/Oh + Vh_/R + OV,_/Os = OVh+/Oh + Vh+/B + OVs+/Os. 

On the other hand, from the continuity condition of the velocity vector at the front it fol- 
lows that V h_ = Vh+ , V s_ = Vs+, implying 3Vs_/~s = 3Vs+/3s , and hence 3Vh_/3h = 3Vh+/3h = 
~Vn/3n. Substituting the last equality into the relations -p_ + 2p_(3Vh_/~h ) = -p+ + 
2~+(3Vh+/Sh), which follows from the continuity conditions of the stress vector at the front, 

we find (3Vn/3n) F = (p+ - p-)/2A~ (A~ = p+ - ~-). Following the substitution of expansion 
(4.1) for the pressure with subsequent linearization, the latter equality finally acquires 
the form 

(av.,'On)F = [(po+ - po-)  + (p+  - p i ) ] / 2 A ~  + , . .  ( 4 . 4 )  

Taking in account (4.2)-(4.4), the condition of front motion (2.20) corresponding to the 
first approximation in r is written in the form 

Of' ~o U ~ , I RO . , p~ 0--7 + ( 1 + e Z ) l ' + ~ e Z  - - V ~ - - 7 ~ e Z [ p  + -  ) = 0 .  ( 4 . 5 )  

Within the first approximation in e the remaining linearized boundary conditions and the 
equations are not changed in comparison with the zeroth approximation. Not dwelling on the 
technique of finding the perturbation increment which is discussed in detail in [7], we pro- 
vide the calculation results. We restrict ourselves to the case of a small radius of inter- 
nal boundary surface S_ and large radius of the external S+ (R-/R0 + 0, R+/R 0 + ~ is the 
front in the field of an axially symmetric hydrodynamic source). We then have for the in- 
crement 

= ~o + ~ t  + .... ~o = U/Ro ' ( 4 . 6 )  

o* = Z[k 2 - -  2k(l - -  ~)/(1 + ~) + l]U/Ro, 

w h e r e  ~ = p _ / ~ + ;  and  k i s  t h e  p e r t u r b a t i o n  mode number  ( f '  ~ e x p  ( - ~ t  + i k ~ ,  and  i i s  p u r e  
imaginary unity). The quantity in the square bracket in (4.6) is positive. Therefore, as 
is the case for the zeroth mode, the relation 0 < m0 < ~ is satisfied for high modes, so 
that within the first approximation in e the perturbations decay more quickly than in the 
zeroth approximation and the stability of high modes is enhanced. The e I value increases 
with k, i.e., the higher mode perturbations decay more quickly. Thus, dispersion of the 
perturbation which has been absent in the zeroth approximation [7] appears within the first 
approximation. 

Similarly to the case of external supply to the medium we obtain that in the second 
equality for ~0 in (4.6) the sign changes to the opposite one and, thus, ~0 < w < 0. In 
this case, within the first approximation in e the perturbations evolve more slowly than in 
the zeroth approximation, and there is a tendency to stabilization of the unstable higher 
modes. However, as is also the case for the zeroth mode, this stabilization can really occur 
only for small front radii R0, comparable with its thickness 6, when the frontal regime of 
reaction transmission degenerates, and the first order approximation in E becomes operative. 
Formally the value of the front radius, for which stabilization of the fixed mode takes place, 
is found by extrapolating the solution (4.6) to the region of small R0: 

B 0 = B~ = Z[k'-- 2k(l --ay(l + a) + i]6. (4.7) 

The accuracy of the last relation is enhanced for the higher modes, when k >> 1 and R0 >> 6. 
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